首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25052篇
  免费   3632篇
  国内免费   4497篇
化学   26509篇
晶体学   320篇
力学   624篇
综合类   120篇
数学   166篇
物理学   5442篇
  2024年   36篇
  2023年   255篇
  2022年   472篇
  2021年   956篇
  2020年   1265篇
  2019年   1062篇
  2018年   896篇
  2017年   1103篇
  2016年   1411篇
  2015年   1233篇
  2014年   1347篇
  2013年   2528篇
  2012年   1866篇
  2011年   1564篇
  2010年   1341篇
  2009年   1476篇
  2008年   1544篇
  2007年   1620篇
  2006年   1491篇
  2005年   1396篇
  2004年   1286篇
  2003年   1084篇
  2002年   791篇
  2001年   702篇
  2000年   566篇
  1999年   531篇
  1998年   476篇
  1997年   341篇
  1996年   323篇
  1995年   444篇
  1994年   403篇
  1993年   311篇
  1992年   245篇
  1991年   134篇
  1990年   104篇
  1989年   100篇
  1988年   82篇
  1987年   52篇
  1986年   56篇
  1985年   65篇
  1984年   47篇
  1983年   20篇
  1982年   38篇
  1981年   33篇
  1980年   24篇
  1979年   14篇
  1978年   10篇
  1977年   8篇
  1976年   6篇
  1975年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
This study reports an application of trichloroethanol (TCE) as a bifunctional initiator for the synthesis of block copolymers (BCPs) by organocatalyzed ring‐opening polymerization (OROP) and atom transfer radical polymerization (ATRP). TCE was employed to synthesize a low dispersity poly (valerolactone) macroinitiator, which was subsequently used for the ATRP of tert‐butyl methacrylate. While it is known that TCE can serve as an initiator in ATRP, the ability to induce polymerization under OROP is reported for the first time. The formation of well‐defined BCPs was confirmed by gel permeation chromatography and 1H NMR. Computational studies were performed to obtain a molecular‐level understanding of the ring‐opening polymerization mechanism involving TCE as initiator. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 563–569  相似文献   
82.
A new type of chain transfer agent used in reversible addition fragmentation chain transfer (RAFT) polymerization named 9‐anthracenylmethyl (4‐cyano‐4‐(N‐carbazylcarbodithioate) pentanoate) (ACCP) was synthesized with a total yield over 75% by the incorporation of both fluorescent donor and acceptor chromophores. Polymerization of heterotelechelic α,ω end‐labeled dye‐functionalized polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(n‐butyl methacrylate) (PBMA) with adjustable molecular weights and narrow polydispersity could be conducted by a one‐pot procedure through RAFT polymerization with this bischromophore chain transfer agent. The polymerizations demonstrated “living” controlled characteristics. By taking advantage of the characteristic fluorescence resonance energy transfer (FRET) response between the polymer chain terminals, the variation of chain dimensions in solution from the dilute region to the semidilute region can be monitored by changes in the ratio of the fluorescence intensities of the carbazolyl group to the anthryl group, which lends itself to potential applications in characterizing chain dimensions in solutions for thermodynamic or dynamic studies. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2413–2420  相似文献   
83.
如何解释红外谱图   总被引:2,自引:0,他引:2  
王敬尊  王霆 《大学化学》2016,31(6):90-97
红外光谱(IR)主要提供分子的官能团和化学键的丰富的结构信息。通常一个化学键会出现多个不同位置的吸收峰,而图中每个峰又可能是不同化学键的加合峰。因此在红外光谱分析中,并不要求也不可能准确地归属出图中所有的峰,通常只要求能较确切地识别出其中几个特征峰已足矣。  相似文献   
84.
Molecule‐based micro‐/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro‐sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro‐/nanomaterials. Unlike single‐component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro‐/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro‐/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low‐dimensional multicomponent micro‐/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro‐/nanomaterials.  相似文献   
85.
Macroscopic and spatially ordered motions of self‐assemblies composed of oleic acid and a small amount of an azobenzene derivative, induced by azobenzene photoisomerization, was previously reported. However, the mechanism of the generation of submillimeter‐scale motions by the nanosized structural transition of azobenzene was not clarified. Herein, an underlying mechanism of the motions is proposed in which deprotonation of carboxyl groups in cooperation with azobenzene photoisomerization causes a morphological transition of the self‐assembly, which in turn results in macroscopic forceful dynamics. The photoinduced deprotonation was investigated by potentiometric pH titration and FTIR spectroscopy. The concept of hierarchical molecular interaction generating macroscale function is expected to promote the next stage of supramolecular chemistry.  相似文献   
86.
The recently introduced analytical model for the heat current autocorrelation function of a crystal with a monatomic lattice [Evteev et al., Phil. Mag. 94 (2014) p. 731 and 94 (2014) p. 3992] is employed in conjunction with the Green–Kubo formalism to investigate in detail the results of an equilibrium molecular dynamics calculations of the temperature dependence of the lattice thermal conductivity and phonon dynamics in f.c.c. Ni. Only the contribution to the lattice thermal conductivity determined by the phonon–phonon scattering processes is considered, while the contribution due to phonon–electron scattering processes is intentionally ignored. Nonetheless, during comparison of our data with experiment an estimation of the second contribution is made. Furthermore, by comparing the results obtained for f.c.c. Ni model to those for other models of elemental crystals with the f.c.c. lattice, we give an estimation of the scaling relations of the lattice thermal conductivity with other lattice properties such as the coefficient of thermal expansion and the bulk modulus. Moreover, within the framework of linear response theory and the fluctuation-dissipation theorem, we extend our analysis in this paper into the frequency domain to predict the power spectra of equilibrium fluctuations associated with the phonon-mediated heat dissipation in a monatomic lattice. The practical importance of the analytical treatment lies in the fact that it has the potential to be used in the future to efficiently decode the generic information on the lattice thermal conductivity and phonon dynamics from a power spectrum of the acoustic excitations in a monatomic crystal measured by a spectroscopic technique in the frequency range of about 1–20 THz.  相似文献   
87.
Despite the growing literature about diphenylalanine‐based peptide materials, it still remains a challenge to delineate the theoretical insight into peptide nanostructure formation and the structural features that could permit materials with enhanced properties to be engineered. Herein, we report the synthesis of a novel peptide building block composed of six phenylalanine residues and eight PEG units, PEG8‐F6. This aromatic peptide self‐assembles in water in stable and well‐ordered nanostructures with optoelectronic properties. A variety of techniques, such as fluorescence, FTIR, CD, DLS, SEM, SAXS, and WAXS allowed us to correlate the photoluminescence properties of the self‐assembled nanostructures with the structural organization of the peptide building block at the micro‐ and nanoscale. Finally, a model of hexaphenylalanine in aqueous solution by molecular dynamics simulations is presented to suggest structural and energetic factors controlling the formation of nanostructures.  相似文献   
88.
The surface grafting of attapulgite (ATP) with polystyrene (PS) was established via a simultaneous reverse and normal initiation atom transfer radical polymerization (SR&NIATRP). 4‐(chloromethyl)phenyltrimethoxysilane (CMPTMS) chemical bounded on the surface of ATP (ATP‐Cl, Cl‐I) was prepared via one‐step self‐assembly. SR&NI ATRP of styrene was conducted using CuCl2 complex tris(2‐(dimethylamino)ethyl)amine (Me6‐TREN) as the catalytic system, initiated by 2,2‐azobis(isobutyronitrile) (AIBN) and ATP‐Cl. FT‐IR, XRD, XPS, TGA and TEM data were consistent with the grafting of benzyl chloride groups and PS chains on ATP surface. The controllability of polymerization was investigated by the kinetics behavior under different molar ratio of AIBN and CuCl2. The obtained polymer possessed a uniform distribution of molecular weights with a lower polydispersity index of 1.2~1.4. The relationship between polymerization on the surface of ATP and in solution was discussed in detail based on TGA data of hybrid particles and GPC trace of free polymer in solution. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1508–1516  相似文献   
89.
Fast and effective structural/compositional analysis on formulated systems represents one of the major challenges encountered in analytical science. 13C‐detected diffusion represents a promising tool to tackle the aforementioned challenges, particularly in industry. Toward exploring the generic applications of 13C‐detected diffusion, thermal convection induced by 1H decoupling has been identified as a key factor that resulted in significantly reduced resolution in the diffusion dimension. Optimization of experimental parameters and utilization of double‐stimulated echo‐based pulse sequence both can effectively suppress the thermal convection caused by the 1H decoupling, the success of which allows robust and generic applications of 13C‐detected diffusion to systems from mixtures of small molecules, polymer blends, and copolymers to actual complex formulated systems. The method is particularly powerful in differentiating small molecules from polymers, polymer blends from copolymers, and end‐group analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
90.
The highly stable nitrosyl iron(II) mononuclear complex [Fe(bztpen)(NO)](PF6)2 (bztpen=N‐benzyl‐N,N′,N′‐tris(2‐pyridylmethyl)ethylenediamine) displays an S=1/2?S=3/2 spin crossover (SCO) behavior (T1/2=370 K, ΔH=12.48 kJ mol?1, ΔS=33 J K?1 mol?1) stemming from strong magnetic coupling between the NO radical (S=1/2) and thermally interconverted (S=0?S=2) ferrous spin states. The crystal structure of this robust complex has been investigated in the temperature range 120–420 K affording a detailed picture of how the electronic distribution of the t2g–eg orbitals modulates the structure of the {FeNO}7 bond, providing valuable magneto–structural and spectroscopic correlations and DFT analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号